江苏电能管理系统方案

    更新时间:2024-11-09 浏览数:610
    发货地址:江苏省无锡江阴市南闸街道南闸村  
    产品数量:9999.00个
    价格:面议

    某机场航站楼的智能供配电设计 安科瑞鲍静君

    1 工程现状及配电站布局

       该机场由当地220kV变电站供电,共有三路独立35kV电源,引入机场的1#、2#总降压站,降压成10kV后,分配给机场内各个配电站。机场航站楼的登机长廊长1370m,候机大厅及登机长廊每层建筑面积**过5万m2。为了使供电电源深入负荷中心,减少电能损耗,提高供电质量,节约投资费用,经综合考虑,配电站采取如下布局:在候机大厅地下机房层内设置两个独立的配电站,主要供电给全部候机大厅的用电负荷;在登机长廊底层共设5个配电站,给登机长廊及候机大厅的连接廊提供电源。

        航站楼内7个配电站的负荷、容量见表1。航站楼内用电计算负荷总计约34679kVA,其中有功计算容量为26703kVA。从表1可知,七个配电站共用变压器18台,其中2500kVA的6台,2000kVA的8台,1600kVA的4台。

    航站楼各变配电站负荷容量表     表1

        配电站中,每两台变压器的380V/220V低压侧均设置手动/自动母联开关。当其中一台变压器故障后,另一台变压器将会在启动强风冷却后,长期承担变压器额定容量的133%负荷,以减少由于变压器故障而带来的停电事故。

    2 变配电系统设计

        航站楼每个配电站均由机场总降压站中引出的两路独立的10kV电源供电,两路电源平时同时供电,故障时互为备用。供电系统10kV高压侧采用单母线分段,中间设手动/自动母联开关。当两路供电电源中有一路故障时,另一路将供站内所有配电变压器负荷,10kV侧备用率为**。七个配电站的系统接线原则上是一样的,不同点仅为变压器的数量、容量及出线回路。候机大厅内的两个配电站中每个站设置四台变压器,容量相同,平时各由一路10kV电源给两个变压器供电,当其中一路10kV电源故障后,另一路10kV电源承担全部四台变压器容量负荷。10kV配电系统图如图1。

    2.1 10kV配电柜

        10kV配电柜采用可抽出式、全封闭型、中置滑架式结构,柜体具有可靠的防止无操作的“五防”装置,10kV断路器采用真空式。

        进线柜安装安科瑞公司的微机线路保护装置,采用过电流速断保护;变压器出线柜安装安科瑞公司的微机变压器保护装置,采用过电流及速断保护、接地保护、变压器非电量保护(高温告警、**温跳闸保护)等;电压互感器柜安装安科瑞公司的微机PT监测装置,实时监测PT电压,并对PT进行过电压、欠电压等保护;电机出线柜安装安科瑞公司的微机电动机保护装置,采用过电流及速断保护、接地保护、负序电流保护等。

    图1 航站楼变电站典型高压配电系统图


    10kV配电柜上配置的二次设备清单见表2。

     

    2.2 变压器

        各配电站中采用的10/0.4kV变压器均为三相环氧树脂浇注干式变压器,容量为1600-2500kVA。变压器带有内置式辐流风机,保证启动风冷后变压器容量增大50%。风机由温控箱自动控制,变压器低压绕组内埋有热敏电阻。温度大于110℃就自动启动风机,降到90℃时自动关闭。变压器出线柜上配有微机厂用变保护装置,当**过155℃时发出声光警报,当**高温时,启动断路器跳闸。

    2.3 低压配电系统及配电柜

        七个配电站均设置在地下层级底层。各低压配电柜全部采用全金属铠装抽出式开关柜、柜体设计和结构符合和标准,柜内受点主开关及母联开关采用空气断路器,出线开关以塑壳断路器为主。  

        航站楼各配电站内的380V低压配电系统如图2设计,10kV/0.4kV变压器降压后进入低压进线柜,再经无功补偿柜,柜内装设安科瑞公司的ARC-12/J的无功补偿控制器,其是带微处理器的自动功率因数调节器,电容器为干式。各低压出线柜上均装设ACR系列网络电力仪表,可对低压线路进行三相电压、电流、有功功率及电度测量。

        低压配电柜上各电气设备的选型参考表3。

    图2 航站楼380V低压配电系统图

    0.4kV低压配电柜电气设备清单    表3

    3 航站楼智能配电监控系统与能耗分析数据管理系统

    3.1 航站楼智能配电监控系统

        本航站楼采用安科瑞公司的Acrel-2000智能配电监控系统,楼内所有配电站(10/0.4kV)、UPS装置及应急柴油发电机组等设备均被归纳于智能配电监控系统中。整个监测系统由三个部分组成:现场设备及数据采集模块、系统监测站和电力监测管理中心,是一个分布式的综合电力监测系统。

        现场设备及数据采集器主要是:智能化开关、各出线柜上配备的ACR220EL网络电力仪表、UPS、自备发电机组监控器上的数据通信接口。现场断路器通过数据采集模块与系统连接。这些监控器或模块就地装置,独立完成其保护和测量功能而不依赖通信网,主要负责现场参数测量、数据采集、处理及作为智能化开关设备与*监控系统接口、将数据通讯上报纸系统。

        系统监测站主要负责对数据采集模块通过通讯网络传来的数据进行实时计算处理、保存、显示和生成报表。每个变电站中有一个系统监测站,负责本站内的监测。

        在登机长廊底层3#配电站中,设置了一个电流监测管理中心,将楼内所有系统监测站的信息通过**通信网络集中到一起管理已经对各区信息数据进行集中监测、处理。监测主要内容有:各变配电站母线段电压值、电流值;各回路电量的实时采集;线电压、相电流;三相有功功率、无功功率、有功电能;频率、功率因数;电压不平衡度、电流不平衡度;各断路器、手车状态;变压器温度、运行状态;自备发电机组的启动及运行监测。

        监控系统的主要功能有:显示区域平面系统图或主菜单;实时显示主接线图、断路器、手车、接地刀闸的变为情况及母线受电情况;实时显示自动装置运行状况图、电力变压器非电量回路图等。在微机保护装置发生动作时自动发出警报并产生事件记录、事故追忆、故障录波等。

    3.2 航站楼能耗分析数据管理系统

        航站楼内Acrel-2000智能配电监控系统与Acrel-5000能效数据分析管理系统的组网示意图如下:

    图 3  航站楼智能配电监控与能耗监测组网示意图

        航站楼内的用电负荷有:普通电力、**设备电力、各场所照明、插座、广告灯箱、空调、通排风机控制、消防设施、安保、行李分拣、航班显示、机坪灯光、各类垂*降梯、自动扶梯、自动布道、弱点机房用电等。楼内所有消费设施包括消防水泵、喷淋泵、排烟、正压风机、消防电梯、大楼消防、安保及设备监控中心、通讯、航班显示系统、综合布线系统、行李分拣、自动化及监控系统、安检系统、当地网络分配场所、办票服务台以及安全疏散照明灯均作为一类重要负荷;其余作为二类负荷。

        由于航站楼内用电负荷较多、用电量大,因此需对楼内的电能消耗做分项能耗管理,采用安科瑞公司的Acrel-5000能效监控系统按用途划分进行采集和统计能耗数据,如:普通照明用电、航班服务用电、消防用电、空调用电等。系统可通过历史数据和预算数据分析,客观确定节能改造性价比;改造前后能耗数据对比,实事求是的节能效果评价;节能措施的精细化管理,**其效果的可持续性。

    3.3 航站楼Acrel-2000智能配电监控系统界面

        Acrel-2000智能配电监控监控系统通过系统数据和规约库模板配置将微机保护装置和多功能电力仪表以及各种传感器连接起来,把供电系统的各回路电参量、开关状态量、电能消耗等通过通讯网络实时的仿真到计算机画面,供电运行维护人员可以通过监控计算机来实时了解供电系统的每个环节。在发生可能导致事故的异常状况时可自动告警;在发生事故时可产生事件记录、记录故障前后波形,甚至可在事故发生后重演事故过程,并提供各种曲线、柱状图等分析图形和报表,使配电系统自动化运行。

    图4  Acrel-2000智能配电系统主接线图

        

    图5 Acrel-2000智能配电系统实时监测画面及报表

    图6  事故追忆画面及监测数据报表

    3.4 航站楼Acrel-5000能耗数据分析管理系统界面

        航站楼内的Acrel-5000能耗数据分析管理系统在系统监测站定时采集各监控点的仪表参数并上传至本地能耗分析管理系统数据库,用户可用于当地实时查询能耗监测情况,如图7所示。系统可统计航站楼内耗电量的时用量、日用量和年用量,以曲线图或柱状图等方式显示,支持报表输出,图8所示。系统还可提前各分项耗电量数据进行同、环比分析,如图9所示,确立成员值并对各监控点的耗电量情况进行耗电水平判定,对用电改善提出一套完整的诊断流程,并给出耗电分析报告。

     图7  Acrel-5000系统监测站实时电量测量

    图8 航站楼内用电量的时用量、日用量、年用量柱状图

     图9 航站楼内 各用途用电量同、环比图

    4 航站楼紧急备用电源

    4.1 柴油机组

        航站楼内所有一类重要负荷,采用柴油发电机组及不间断电源(UPS)装置作紧急备用电源。根据国家电气设计规范,一类负荷要求有两路不同电源供电,而提供航站楼内每个配电站的电源均为两路。在实际运行中,当一路电源故障时可能另一路也同时出现故障,因此为确保航站楼供电的可靠性、安全性,设置了后备电源。

       根据一类重要负荷的分布,设计了4台柴油发电机组,分别设置在4个不同的机房内。发电机容量满足一类重要负荷容量加上部分能**航站楼运行的基本设备符合,见表4。

    应急负荷及发电机容量  表4

       航站楼是中国机场的中心,建筑面积大,旅客吞吐量大,合理的设计供配电系统尤为重要。本航站楼内设计了Acrel-2000电力监测系统和Acrel-5000用电量数据分析管理系统,能实现航站楼内遥测、管理和无人、少人值班,从而到达优化电能管理,保证安全供电。

    参考文献

    [1] 上海浦东机场航站楼的供配电设计.邵民杰.供用电.No.5 Serial No.18,2001.10.

    [2] JGJ 16-2008 民用建筑电气设计规范[S].

    [3] GB 50052-1995 供配电系统设计规范[S].

    [4]安科瑞电气股份有效公司.能效管理系统设计安装图册.2013.11.1合订本.

    安科瑞能耗管理系统在某校园的应用  安科瑞鲍静君

    0 引言

        虽然我国已经出现一批在创建节约型校园方面率先的高等学校,但是2015年版中国建筑节能年度发展报告显示,我国各类高等学校平均单位建筑耗电量达43kWh/m2,根据报告数据,80%以上高等学校没有装设校园能耗监测系统,学校建筑能耗情况缺乏有效的管理,能源消耗情况混乱。

        为了推动全社会节约能源,提高能源利用效率,保护和改善环境,加快建设节约型社会,促进经济社会协调可持续发展,国家**、住建部、工信部以及各地方**相关部门相继制定了针对行业能源消耗统计和节能工作的指导性文件,如《国家机关办公建筑和大型公共建筑能耗检测系统技术导则》、《关于做好工业电力需求侧管理工作的指导意见》等。安科瑞以自身产品为依托,结合行业标准和规范,提供了企业内部Acrel3000电能集抄管理系统、Acrel3100预付费售电管理系统、Acrel5000能耗监测管理系统等一系列针对智能电网电力需求侧完善的电能管理系统解决方案,为用户梳理用能走向,构建能源计量体系。

    1 校园能耗管理系统介绍

    1.1电能能耗管理的概念

        校园建筑的主要能耗是电力,但是目前供电部门只在校园各建筑高压10kV 侧安装了两块用于收费的电能数据表,师生只了解每栋建筑分月电耗情况,对于各建筑电耗浪费在哪里、哪里有节能潜力却无从知晓。这种情况下,安装校园电能分项计量系统是十分有必要的。

        电能分项计量是指将建筑内各终端电耗设备按用电属性进行分类,并进行数据采集和分析整理的技术。从用能特点和性质上分,校园建筑的分项能耗通常包括空调系统能耗、照明能耗、插座或办公设备能耗、电梯能耗、信息中心或厨房等特殊功能区域能耗(图1) 。分项计量技术不仅可以实时采集建筑能耗数据,还可通过详细的分项计量,分析诊断各终端电耗设备运行状况挖掘建筑节能潜力。本文以某校园为例,浅析Acrel5000能耗管理系统在校园中的应用。

    图 1  校园建筑电能分项计量结构图

     

    1. 2 现场装表方案

        根据原建筑的配电系统图纸分析和现场调研结果,了解了该校园各配电支路末端实际负载情况,结合电表安装规则,综合确定电能分项计量的装表方案。数据采集网关安装在低压配电室内,并配置标准导轨挂装在配电房中,方便线路汇总接入校园网[1] 。实验楼电能分项计量系统现场施工主要设备含:三相电表( 安科瑞 DTSD1352),单相电表(安科瑞 DDSD1352),电流型互感器(安科瑞 AKH-0.66) , 网关箱(1000*800*80), 四端口网络模块。

        分项计量电表通过RS485 串行通讯端口接入到数据采集网关。每个数据采集网关提供多个半双工RS485 端口,每个端口与一个分项计量电表连接,采用主-从方式进行通讯。

    1. 3 Acrel5000能耗系统方案设计

        Acrel5000能耗统由现场数据采集系统、远程传输网络、电能监测中心 3 部分组成。其中,现场数据采集系统由末端电能计量装置和数据采集网关组成,构成建筑内部的监测传输网络;远程传输网络是指实现建筑现场计量装置与远程电能监测中心的数据通信网络;电能监测中心由数据库服务器、web 服务器等组成,完成能耗数据的动态监测及分析处理工作。

    图2 能耗管理系统图

     

    2 能耗管理系统具体环节介绍

    2.1 电能数据计量设备

        针对集中安装的应用场合,客户不便于靠近仪表插卡充值,设计开发了终端充值预付费售电管理系统。系统由主站软件、读卡器、充值终端及DDSY1352-NK、DTSY1352-NK内控型预付费电能表组成。充值终端接收卡内信息并将其通过485通信下发给仪表完成对仪表的充值。相当于将插卡式预付费电能表的读卡部分转移到集中安装的电井外面方便客户查询充值。本系统适用于电能表集中安装对业主不开放、需要自助查询;电能数据计量设备一般由带有数字输出接口的远程传输型单相DDSD1352或三相电能表DTSD1352组成。该电表必须满足DL/645 规约和RS485串行通信接口。为满足对数据采集实时性的要求,每个计量电表都单独使用一个串行端口, 即计量电表接入现场数据采集网关。

    2.2 数据采集网关硬件设计

        数据采集网关可以将采集数据处理转化为能够在以太网上传递的数据帧,再通过有线或者无线蜂窝移动网,将采集的电量经校园网或移动网的分组数据域( GPRS)传递到远端的数据采集服务器。

     3 系统软件设计

        远程预付费管理系统

        1.Acrel3100预付费售电管理系统由系统软件-通信管理机-预付费电能表组成,通过通信网络完成系统到表的充值、查询、监控及遥控等功能,切可选配短信提醒服务。远程充值可在售电方直接实现从后台到仪表的充值,用户*重返仪表前插卡才能完成充值,充值方便快捷。

        该功能主要是按操作员来查询售电记录,如下图所示。选择起止日期、填写需要查询的仪表编号、用户号、用户名字和户号,点击查询按钮即可查询到相应的记录。且该功能也支持导出打印操作。

        报表中心提供了多个时间单位的各种统计数据,并能查询、导出打印统计出的报表。数据中心主要分为实时报警记录报表、日销售报表、月销售报表以及年销售报表。

    4系统功能

    4.1Acrel 5000能耗管理平台各子系统模块

        Acrel 5000能耗管理平台将企业用能按电力供应,设备用电的供配电线路进行梳理,进行电能集抄,并结合配电领域的性对用电过程中诸如电能质量、故障管理、用电安全、负荷管理进行可视化设计,形成符合企业用能特点的定制化辅助工具。

    4. 2区域用能管理

        高校用能按区域划分,灵活配置计量表具,系统可统计出日、周、月、年报表,并分析用能趋势,Acrel 500能耗管理系统便于校方实时直观掌握各区域电能消耗情况。

    4.3部门用能管理

        高校可建立部门用能定额,将部门实际用能与计划值进行比较,系统可反映出建筑物当日与昨日同期、当月与上月同期、当年与上年同期等各类同环比分析对比情况。

    4.4支路用能管理

     

        能耗管理系统可以对建筑物各支路用能进行远程集抄,并可查询仪表的各类参数(电压、电流等),并以图形方式显示;系统使用者可通过相关界面调取各节点的电能统计报表,减少用能的“跑、冒、滴、漏”和计量误差。

     

    5实验楼节能效果评估

        由图5知该实验楼夏日较大电耗设备为楼内各分散空调。且由用电能耗曲线图可知,晚 6 时下班后,部分分散空调由于人员疏忽继续运行。负载较大的电梯白天空载较多。由于人员用能习惯不当和部分设备运行方式欠佳造成该实验楼存在较大节能空间。由此,提醒该楼人员转变不良用电习惯可达到一定节能效果。

        按照设计方案,在该实验楼低压配电室安装电能分项计量系统,完善上位机界面后,能实现用能实时监测、历史查询、统计分析、综合管理等功能,从监测数据中纠正用能习惯缺陷,寻找能耗漏洞,掌握实时能耗分配情况,提高师生节能意识并促进行为节能。

    6结束语

        本文提出并设计了校园某实验楼用电分项计量系统的方案, 该方案能实现对实验楼用电量分项定时采集和监测. 通过实验楼用电能耗数据采集与实施监测的模拟实验, 系统性能符合基本需求. 为进一步搭建校园电能分项计量系统的标准化通用型平台奠定了基础.

     

    参 考 文 献

    【1】陈思嘉, 李果, 张广明. 某高校图书馆能耗分项计量设计[ J] . 现代电力电子技术, 2010( 3) : 314.

    【2】 王鑫. 大型公共建筑用电分项计量系统研究与进展( 2)[ J] . 暖通空调, 2010( 8) : 40.

    【3】金星, 果勇, 王盛慧. L abSO L 数据库访问工具包的设计与实现[ J ] . 长春工业大学学报( 自然科学报) . 2010( 6) : 31

    你可能感兴趣的产品