电能管理系统品牌

    更新时间:2024-12-22 浏览数:570
    发货地址:江苏省无锡江阴市南闸街道南闸村  
    产品数量:9999.00个
    价格:面议

    能耗管理分析系统在医疗卫生建筑中的应用 安科瑞鲍静君

    1 概述

    近些年我国的医疗事业发展*,引进了相当多的高科技医疗设备,医疗向大型化、集团化发展,医疗技术水平可与欧美等发达国家相媲美,同时带来的则是能源消耗的直线上升,消耗的能源包括电、油、气、水等,能源消耗量大。医院属于公共建筑,因此,对于医院行业的能耗管理系统,我们希望达到的目的是在保证一定的安全性、舒适度和便利度的条件下实现在能源的消耗量下降的同时提高能源使用的品质。在提高品质的过程中,也在一定程度上节省了能源的消耗,提高了能源的使用效率,做到能源消耗过程中从质和量两方面的改善。

    2 医疗卫生建筑能耗特点

    与办公楼宇、商场、宾馆酒店等公共建筑相比较,医院的能源消耗指标相对较高。,用能设备的种类多,涵盖医院建筑、办公建筑、医疗设备、办公设备、交通工具等;二,具有单位多、分类广、特点不同、层次复杂等特点;三,医院耗能涉及水、电、热力、煤气、天然气、燃油等各种资源。尤其用电负荷大,占总能源消耗的80%左右,并且用电负荷的起伏变化也很大,因为季节交替、气候变化、昼夜轮回、人流量变化等因素的影响,用能整体具有不恒定的特点,从节能的角度考虑,节能空间也是巨大的。

    因此,这种情况下,要实施精细化管理,必然要了解医院的各部位的能耗情况,掌握各类能源在时间、空间上的分布规律,借助一定的辅助分析工具对医院的能耗进行指标量化。所以亟需对医院的能耗实施分项计量和对能源消耗情况进行监测,这是所有节能管理工作的基础。

    3 医疗卫生建筑能耗管理系统的可行性分析

        随着GB 50189—2005《公共建筑节能设计标准》的实施,能耗管理系统已在全世界范围内的大型公共建筑中成功应用,并且带来了良好的经济效益和社会效益。医疗卫生建筑能耗管理系统是一个大型的综合自动化系统,它采用通用的软件平台、一致的硬件架构、统一的人机界面,通过对相关系统的集成和互联,建立了一个高度共享的信息平台,实现建筑内各部门系统的信息互通与资源共享,从而提高了医院日常管理与调度工作的效率和部门运营的整体服务水平。

     另外,通过智能通信管理器将数据信息上传至综合监控系统。采用这种方式不仅能确保采集的设备电能数据能够及时发送到监控系统,而且可靠性高、系统构成简单、经济,便于集中管理。在此基础上,采用可靠的能耗管理软件、硬件,完全可以建立一套完整的、具有水平的医疗卫生建筑能耗管理系统。

    4 能耗管理分析系统在上海华山医院病房新建工程中的应用

    4.1项目概况

      上海华山医院病房楼是一幢医用建筑,建筑面积约为2万平方米。根据配电系统管理和能耗监测的要求,需要对楼内的高压进线、低压配出线和各楼层内配电箱进行电力监控,实现对病房楼内用电量和用水量的在线监测,方便对该建筑群的能耗管理,以保证用电的安全、。

    Acrel-5000建筑能耗分析管理系统的能耗数据采集方式包括人工采集方式和自动采集方式。通过人工采集方式采集的数据包括建筑基本情况数据采集指标和其它不能通过自动方式采集的能耗数据,如建筑消耗的煤、液化石油、人工煤气等能耗量。通过自动采集方式采集的数据包括建筑分项能耗数据和分类能耗数据,由自动计量装置实时采集,通过自动传输方式实时传输至数据中心。

    4.2组网结构

    本系统主要由数据采集层、数据传输网络、能效管理系统软件三部分组成。

    1、数据采集层

    通过安装在能耗监测仪表箱(柜)中的带数字接口的智能电力仪表,实施对负荷用电量的实时监测。监测数据包括:电压、电流、有功功率、无功功率、功率因数、有功无功电能、谐波、环境与开关状态、事件记录等用电参数。监测对象包括:电力需求侧中低压馈线回路、主要耗能机电设备、医院内其他耗能设施。同时也可以对用水量、用气量、热量等通过电子式流量表、电子式热量表等现场智能计量装置实现数据采集。根据现场条件和系统应用的要求,采集的数据也可以取自用户的其他智能系统的数据接口。

    2、数据传输网络

    通过在能耗监测仪表箱(柜)中安装的能耗智能数据网关,实时采集能耗计量仪表的数据,并且通过TCP/IP网络传输到能耗监控中心。*远距离布线,施工简单可靠。智能数据网关提供多种接入方式,支持包括RS-485/RS-232总线、光纤、工业以太网、433M无线、GSM/GPRS/CDMA网络传输等多种方式。

    3、用电及能效管理系统软件

    完成数据采集、校验、分析、处理、输出、系统维护、授权使用权限分级控制等;并可将现场运行的重要数据、报警信息、故障信息等传送到企业决策人员。

    4.3 设备参数列表


    4.4系统设计参数

    4.5.1系统能耗监测由能源监控平台、交换机、多功能电表、通讯转换器、远程水表等设备组成,本系统实现的功能为水、电耗的集抄。

    4.5.2支持统一网络架构下的电力、水等能源数据的采集和管理,能耗数据采集*在多个不同系统中集成,能量监测与管理系统包含丰富的功能,能够对建筑物或建筑群中各类能源(电、水)进行分别统计、统一管理并提供能耗数据自动采集、分析和挖掘、持续优化。

    4.5.3系统采集来自智能测控单元装置送来的参数,包括每个用电回路的实时电能值和各种告警信息,各水表的用水量等,并实时显示采集上来的各个参数。

    4.5.4各能源管理组逐时、逐日、逐月、逐年能耗值报告,帮助用户掌握自己的能源消耗情况,找出能源消耗异常值。

    4.5.5系统支持基于Internet的远程浏览,不同的能源管理部门可在不同的地点同时查看所需能源的消耗情况。

    4.6 系统功能及软件界面

    4.6.1分类、分项能耗数据统计

    系统具备历史数据、报警信息等的存储功能,存储历史数据保存时间大于三年。系统同时具备将分类、分项能耗数据按“需要发送至上级数据中心的能源数据”的要求发送至上级数据中心的功能。界面如图1。

    4.6.2能耗数据的实时监测

    系统具备良好的开放性,可对用户需求进行功能扩展,在基本分析功能的基础上为用户定制个性化报表和分析模板;系统具有报警管理功能,负责报警及事件的传送、报警确认及报警记录功能以便告知用户或供用户查询;系统具备权限管理、系统日志及系统参数设置等功能。界面如图2。

    4.6.3用能情况的同、环比分析

    对各分类、分项能耗(标准煤量或千瓦时)和单位面积能耗(标准煤量或千瓦时)进行按月、年同比或环比分析。可预置、显示、查询和打印常用建筑能耗统计报表。界面如图3。

    4.6.4建筑能耗数据分析

    系统对分类、分项能耗数据进行采集汇总后,可生成各种数据图表、饼图、柱状图等,实时反映和对比各项采集数据和统计数据的数值、趋势和分布情况。系统可按总能耗和单位面积能耗进行逐日、逐月、逐年汇总,并以坐标曲线等各形式显示、查询和打印。界面如图4。

    4.6.5 远程网络访问功能

    系统以Web发布后可进行远程网络访问。基于.Net平台,使用、JQuery技术开发,可通过Internet访问,具有跨平台的特性,用户可通过各种移动终端(笔记本、平板电脑、手机等)访问。界面如图5。

    图5 跨平台跨网络数据访问

    4.7结语

    上海华山医院采用Acrel-5000能耗管理技术,建立了对整个医院设施能源系统的监视管理,通过对负载能耗设备的能耗与能效数据实时采集监视,实现了对能源系统实时能耗的有效监测管理,提供了用户能源管理系统运营管理的有效工具和能耗成本管理工具,为进一步的节能增效措施提供分析手段,预期效果已开始初步显现:

    Acrel-5000能耗管理系统通过全时的全区域分类数据的上传,不仅降低了大面积、大体量设施能耗的管理强度,还提供各种分类的报表,能耗曲线和趋势分析,提高运营管理的效率。

    Acrel-5000通过对照明、空调、通风等各类负载自动生成细节分项数据,为管理上提供了强有力的成本管理控制工具。

    通过实践证明,Acrel-5000能耗管理系统在医疗卫生行业的应用,带来了很直观的节能经济效果,以及良好的社会效益、环境效益,不仅对医疗卫生行业,对于其他大型公共建筑、综合建筑群、工业企业、基础设施、大型园区等都有很好的借鉴意义。

    水泥企业能源管理系统研究与应用 安科瑞鲍静君

    0项目概况

    山东某水泥厂建有2 条日产5000 吨熟料生产线和一座年产100 万吨水泥粉磨站。为发展循环经济,该厂为2 条熟料线分别配套建设了6MW、9MW 纯低温余热发电站。水泥企业是典型的高耗能行业,该厂煤、电、水费用合计占总生产成本的70%以上。因此,建立有效的能源综合管理系统、节能降耗是公司健康发展的迫切要求。安科瑞电气股份有限公司于2010年4月承接了该项目,整个系统采用Acrel-5000能耗监测系统,主要实现对企业用电量和用水量的在线监测和能耗管理。

    1 目标任务

    监视、分析以及控制能源使用,精确记录水泥熟料生产线各个环节和设备的能耗状况,记录分析和评价整体能耗费用水平,从而降低每个环节和线路能源的整体使用成本,同时将能源数据升华为有价值的信息,用于掌握和分析各个部分的能源使用情况。将能源成本分摊到每个车间、班组、设备、生产环节或线路,并与绩效考核挂钩。自动生成A、B、C、D 各班能源消耗统计及主要设备停机次数、运转时间,并对用能情况通过曲线、棒图等形式表示出来,便于通过能源数据的收集和设备状态的分析,进一步发现能源使用漏点和节能空间比较大的环节,评估各项节能措施和设备的实际效果。

    2 总体设计

    能源管理系统借助现代化网络技术和计算机技术实时监视各种运行能源参数,不断地传送至系统服务器中,使运行管理人员可以通过监控中心了解系统的运行工况,简便地实现各种数据分析。通过该系统,能够精确记录各个车间和主要设备的能耗状况,记录分析和评价整体能源费用水平和能耗费用的分解,发现能耗的过度消耗点,实时监测能耗信息,调动生产者的积极性,帮助提高节能减排的效率。

    2.1 系统组成

    该系统主要由现场监控设备(主要包括各种智能仪表)、通讯设备(工业计算机数据环网)、能源管理系统软件3 部分组成。一次传感仪表主要采用施耐德公司产品,数据采集器、数据处理服务器、网络服务器、网络通信设施、主机及终端显示屏等全部采用产品。

    2.2 系统结构

    该系统数据采集全部来自于现场智能仪表,与工业控制网络完全隔离,确保了工业控制网安全可靠稳定运行。系统与地面管理数据网络互联,实现了WEB 信息传输与发布。系统基于TCP/IP 架构,具备与其他子系统互联互通接口。系统内部能源监控和管理系统采用分层分布式结构,方便用户的管理和维护工作。系统采用**的能源监控和管理软件。

    2.3 系统原理

    通过该系统实时获取能源消耗监控点能耗数据,对能源供应、分配和消耗进行监测,实时掌握能源消耗状况,了解能耗结构,计算和分析各种设备能耗标准,监控各个运营环节的能耗异常情况,评估各项节能设备和措施的相关影响,并通过WEB 把各种能耗日报报表、各种能耗数据曲线等发布给相关管理和运营人员,分享能源信息化带来的成果,完成对企业能源系统的监控及电力负荷耗能状态的监测和管理。为节能工程提供数据支撑。

    2.4 系统功能

    1)实时监测能源数据。准确的能耗数据是节能工作的基础。能源管理系统可以根据实际需要,对水泥熟料生产各工艺,包括石灰石破碎、原料粉磨、煤粉制备、熟料烧成、余热发电等能耗信息进行实时监控。所监控的数据包括电能数据、蒸汽数据、煤耗数据、压缩空气数据、用水流量及原料消耗量等。

    2)形成重要能耗报表。定期提供单位熟料电耗、煤耗、水耗、气耗等综合能耗信息,并对各生产工艺环节进行单耗、总耗统计;报表分为日报、月报、季报、年报等几种,分析电、煤、水、压缩空气、蒸汽消耗情况,以及主机设备运行时间、停机次数等信息。系统还可以分析对比不同时期,同类、不同类设备之间的耗能状况,为发现节能漏点,提供数据参考。

    3)分析能耗负荷特性。以图表、棒图、曲线等方式,进行一系列负荷对比分析,包括单位能耗对比,重要负荷对比,一、二线同类负荷用能对比等;系统将分析结果长期存贮在数据库中,同时考虑能源消耗、生产计划、产出多方面信息,总结经验,使设备以经济合理的方式运行,实现系统的节能降耗。

    4)细化成本管理。科学准确的界定和分析各部门、班组用能成本,可实现对各车间及熟料线A、B、C、D“四班三运行”模式下各班能源消耗数据统计分析,并能做到班、日分析,使能耗分析更加准确、及时、细化,提升了对能耗成本的控制能力。

    通过对比各部门和班组能耗数据,可以发现不良的操作习惯,形成科学的管理和考核办法。

    5)预警并诊断能耗异常情况。对不符合工艺操作流程的用能设备、各测量点能源消耗的异常情况进行自动诊断和报警提示。对**出功率范围的能耗设备进行报警、对重要设备运行匹配状况提出诊断信息。中央控制室管理人员可根据系统提示,及时作出科学处理,有效防止跑冒滴漏现象,为生产线安全稳定运行提供可靠**。

    2.5 软件特点

    上位机软件为Acrel-5000能耗监测系统组态软件,该软件是对现场能耗数据进行采集与监测的**软件,较大的特点是能以灵活多样的“组态形式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常*地实现和完成对现场数据的采集与监测功能。Acrel-5000能耗监测系统具有友好的人机交互界面,可实时和定时采集现场设备各参量及开关量状态,并将采集到的数据上传给数据中心存储。系统还提供了实时曲线和历史趋势曲线分析,符合用户设计需要的报表、事件记录和故障报警等功能。整个系统可以实现所有回路能耗的采集和统计,实现了远程自动抄表、能耗监测功能。

    1)运行状态监测:通讯异常报警提示。

    2)用户管理:不同用户权限具备不同操作功能,各级权限的口令修改操作功能,具有权限防误功能。

    3)能耗报表、棒图:实现了所有能耗报表的按时间查询,分为日、月、年报表等,任意分类、分项实时能耗棒图显示。

    4)打印及导出:所有报表及界面可打印,或以EXCEL、WORD 格式进行导出。

    3 网络实现方案

    系统监控中心设在中央控制室,作为能源管理系统的数据和管理中心,承担整个能源管理系统数据的采集、存储、统计、分析功能,同时管理整个系统的用户权限和Web 发布功能。整个系统采用光纤、以太网总线、RS485 等传输介质,组建独立的、**的通讯网络。主干线采用工业级光纤环型以太网络,环型主干网共设立11 个网络节点,包括监控中心、总降压站、余热电厂电气室、*窑头电气室、*原料粉磨电气室、*原料处理电气室、二线窑头电气室、二线原料粉磨电气室、二线原料处理电气室、石灰石破碎电气室、煤粉制备电气室,其它电气室、工作间等,信号采用光纤、RS485 或信号电缆就近连接到

    这10 个节点之一,实现与监控中心的数据传输。

    能源管理系统采用分层分布式网络结构(图1),系统自下而上分3 层:现场监测层、通讯层和系统管理层。

    图1 某水泥厂能源管理系统网络结构

    3.1 现场监测层

    现场监测层是指直接采集现场设备数据并具备上传功能的现场监测设备,包括流量计、电力参数测量仪、压力传感器、电子秤以及可编程控制器PLC 等。这些监控设备完成信号采集、处理,并转换为通讯信号,接入到网络通讯层。东华水泥公司能源管理系统现场监测层将监测8 个子系统的现场数据:电能子系统、用水子系统、供煤子系统、柴油子系统、压缩空气子系统、蒸汽子系统、原料子系统、烟气子系统。

    3.2 网络通讯层

    网络通讯层是指完成能源管理系统通讯所涉及的底层通讯链路(如RS485)、通讯转换设备(以太网关)以及**层通讯链路(如光纤以太网、TCP/IP 网络)等的总称。这一部分是连接现场监测层和系统管理层的纽带环节。本项目现场通信网络采用RS485 总线方式,支持Modbus 通讯规约。通过以太网关转换为以太网络。以太网关扩展的RS485 的串行接口,支持Modbus 现场总线协议,每个 RS-422/485 通道较多能连接32 个智能设备。通过以太网关把低速串行信号转换为高速以太网,将现场层的电力数据转送入局域网内,方便上位系统的管理。工业级光交换机将以太网的电信号转换成光信号,多个以太网交换机组成光纤环网。依靠光纤网络良好的抗干扰性和传输性能可以更好适应恶劣的电气环境和远程的数据传输。监控中心与各站点(光纤通讯节点)之间采用全双工交换式光纤环网结构。光纤自愈环技术具有稳定性好、可靠性高和自愈能力强的特点。光纤环网中任何一处的线路故障不会导致通讯故障。

    3.3 系统管理层

    系统管理层是能源管理系统的较高管理层。系统管理层的全部设备安放在中央控制室内。配置一台监控服务器、一台操作工作站、一台WEB 服务器、通讯设备、激光打印机、UPS 等。数据服务器采用高性能计算机,能源管理软件采用的监控组态软件。该层完成接受现场监测层和DCS 系统上传的实时数据,并对这些数据进行分析、转换、存储,并以数字、曲线、报表等形式显示在屏幕上。能源管理系统须采用分层分布式网络结构,应具有良好的可靠性与实时性。监控软件应基于Windows 2000/2003/XP 中文操作系统,采用客户机/服务器模式的分布式网络结构,标准化、网络化、功能分布的体系结构;具备软、硬件的扩充能力;支持系统结构的扩展和功能的升级。同时,该层可以提供标准的网络接口和通信协议,实现与其他系统的联接;系统管理层通过OPC Server 与其它集成系统进行数据交换。具备与山东淄矿集团内部计算机网络、信息管理系统(MIS)、生产管理系统(如:DCS)、建筑物集成管理系统(BMS)等系统的联网,与其它接口可采用OPC Server/Client 模式。

    4 主要监控及计量表计

    5 应用效果

    Acrel-5000能源管理系统自 2010 年4 月份试运行以来,通过边完善、边应用、边改进,在能耗管理控制方面取得了初步效果。

    1)强化了对标管理。大力开展了班与班之间、条熟料线与二条熟料线之间对标活动,且能实现当日对标。通过查找能源使用漏洞,减少重要耗能设备故障,提高了设备运转率,降低系统停机率,降低了能耗。

    2)降低了用电消耗。通过能源系统报警提示,当供电系统总负荷**出申请需量时,系统可自动提示DCS 操作员调整负荷,关停有关设备。当原料磨主电机、煤磨主电机等大型用电设备停机后,系统将会自动提示操作人员,将其关联的原料磨风机、煤磨排风机进行及时关停,节约了电力消耗。试运行期间,先后避免了3 次风机停机不及时现象,降低电力消耗**过5000kWh。2 次调整了设备峰谷平用电不合理情况。

    3)加强了用水管理。一旦发现总管路水流量大于其各支路流量之和,或支管路流量突然增大,**出正常范围时,系统将自动报警,监控人员即可断定管路有漏水点,组织人员查找处理,堵塞漏洞。试运行期间,避免了2 次漏水事故。通过开展对标活动和加强考核,取得了显着效果。

    你可能感兴趣的产品