有源滤波器-在线滤波器

    更新时间:2025-01-20 浏览数:453
    发货地址:江苏省无锡江阴市南闸街道南闸村  
    产品数量:9999.00个
    价格:面议

    抑制数据中心谐波放大及分布式治理策略  安科瑞鲍静君

    摘要:本文主要以某大型数据中心谐波治理为例,阐述数据中心谐波产生的原因和相应的有源电力滤波器谐波治理策略。

    关键词:智慧能源;UPS;电压谐波;谐波放大;APF

    1、引言

        在实际工程应用中不难发现,由于电力输配电设施老化、设计不良和供电不足等原因造成末端电压过低,前端电压过高,这对电压要求较高的精密设备造成了很大的威胁。据统计当前公用电网影响用户用电设备的问题主要有电压闪变、谐波干扰、电网噪音、频率漂移、过电压、欠电压、断电及间断等现象。以上问题不可能在短时间内做出解决,比较现实的解决途径是在电网和用电设备之间插入一个二次供电设备,实现局部高品质的供电环境。一般常用的设备为不间断电源系统UPS,它在我国的应用已经非常普遍,广泛应用于互联网、数据中心、银行清算中心、证券交易中心、民航和铁路的控制中心、监控系统等等核心用电部门。但是由于UPS属于电力电子设备,正常工作的时候也会产生谐波电流,由于UPS拓扑结构的不同产生的谐波电流频次和谐波有效值有很大的差异,本文就以大型数据中心的UPS为例,合理分析谐波电流频次,采用分布式治理的方法,有效抑制谐波电流放大,优化电能质量,提高设备用电效率。

    2、谐波电压对电网的影响

    2.1  谐波电压对配电系统的影响

        一般来说理想的交流电源是**弦波形,**弦的交流电压加在线性负载两端,会产生**弦的交流电流。但是**弦的交流电压加在非线性负载两端,会产生失真的交流电流,同时导致**弦交流电压失真。失真的交流电压无论加在线性负载或非线性负载两端,都会产生失真的交流电流。

    图 1 某数据中心配电系统测量示意图(无功柜未投入)

        如图 1所示,1#主变和2#主变共用一段10KV母线,1#主变下UPS1没有投入运行,主要负载全是线性负载,2#主变下UPS2投入运行,主要负载全是非线性负载,两边电容柜没有投入运行,联络柜中联络开关始终处于断开状态。单独运行1#主变时,测量点M1处没有谐波电流和谐波电压;单独运行2#主变时,测量点M2处有谐波电流和谐波电压;同时运行1#主变和2#主变时,测量点M1和M2处都有谐波电流和谐波电压存在。

    2.2  谐波电压对滤波装置的影响

        有源电力滤波器从拓扑结构上分为串联型有源电力滤波器、并联型有源电力滤波器和混合型有源电力滤波器。目前市场上的有源电力滤波器几乎都属于并联型,并联型有源电力滤波器主要原理是通过互感器采集被补偿负载的电流,通过计算分析提取出负载电流的谐波成分,有源电力滤波器被动输出反向的谐波电流来抵消系统中的谐波电流,达到谐波补偿目的。

    图2 某数据中心配电系统测量示意图(增加APF)

        如图2所示,1#主变和2#主变共用一段10KV母线,1#主变下UPS1没有投入运行,主要负载全是线性负载,2#主变下UPS2投入运行,主要负载全是非线性负载,联络柜中联络开关始终处于断开状态。单独运行1#主变时,测量点M1处没有谐波电流和谐波电压;单独运行2#主变时,测量点M2处有谐波电流和谐波电压,开启APF2补偿后,测量点M2处谐波电压和谐波电流有效值减小;同时运行1#主变和2#主变时,测量点M1和M2处都有谐波电流和谐波电压存在,单独开启APF1,测量点M1和M2处谐波电流和谐波电压有效值没有变化,单独开启APF2,测量点M1和M2处谐波电流和谐波电压有效值同时减小。

        上述测试中有一种情况比较特殊,在同时运行1#主变和2#主变,单独开启APF1进行补偿时,虽然滤波器有谐波电流输出,但是测试点M1和M2处谐波电流和谐波电压有效值并没有减小,测量1#主变下线性负载上的电流谐波有效值,有明显的放大现象。这说明2#主变下非线性负载引起谐波电流失真,导致10KV段电压失真,失真的电压加在1#主变的线性负载两端,使M1点出现了谐波电流和谐波电压。虽然APF1对线性负载的谐波电流进行了补偿,但M1点的谐波电流和谐波电压不会改变,相对于APF1并线点的网侧谐波电流和谐波电压有效值不变,负载侧谐波电流有效值增大。因此,并联型有源电力滤波器并不能有效滤除电压谐波引起的电流谐波,相反,会使负载侧谐波电流变的更大。

    3、谐波分布式治理

        工程中往往谐波的产生是多方面的,非线性负荷引起的谐波、背景谐波、补偿装置谐波放大等等现象,都是引起谐波产生的重要因素。

    图3 中国银行某数据中心配电系统图

        如图3所示,是中国银行某数据中心的配电一次图,正常运行时联络柜中母联断路器始终保持断开状态,T1变压器和T2变压器下负载全是12脉冲整流的UPS(T1:SUA2-1、SUA2-2、SUA2-3、SUA5-1、SUA5-2;T2:SUB2-1、SUB2-2、SUB2-3、SUB5-1、SUB5-2),两台变压器所带负载基本一致,前期APF1和APF2没有投入运行,测量T1变压器和T2变压器进线柜谐波电压电流,如图4和图5所示:

    图4补偿前谐波电压波形及畸变率

    图5 补偿前谐波电流波形及有效值

        从上图中可以看出,12脉冲整流型UPS输入侧谐波电流应该是以11次和13次为主,但实际侧量发现明显5次、7次谐波非常大。通过对UPS故障排查发现由于12脉冲整流器使用可控整流方式,上下整流桥调相角度不一致或上下桥直流输出带载不对称等原因造成了UPS输入端5次、7次谐波并没有完全抵消,这些没有抵消的5次、7次谐波经过11次滤波器时谐波被放大,这就出现了我们看到的图4和图5的情况。

        为了滤除现场谐波电流,主动断开所有UPS的11次谐波滤波器滤波支路,增大APF滤波容量,考虑使用APF补偿UPS产生的所有谐波频次。UPS谐波滤波器改造完成后,同时运行APF1和APF2,测量T1变压器和T2变压器进线柜谐波电压电流,如图6和图7所示:

    图6 补偿后谐波电压电流波形

    图7 补偿后谐波电压电流有效值

        以上数据满足GB/T 14549-93《电能质量 公用电网谐波》的相关限值。通过对现场系统和负荷特性的了解,分析负荷故障原因,避免了UPS自带无源滤波器与UPS间的并联谐振,抑制电流谐波放大;采用分布式补偿方案,避免变压器间电压畸变引起的电流畸变,从而有效的滤除UPS产生的谐波电流,解决了现场谐波对公用电网的污染问题。

    4、结束语

        本文分析了数据中心主要负荷UPS谐波产生的主要原因、UPS内部无源滤波原理、谐波电压和谐波电流间的互相关系以及在工程项目中如何判断谐波引起的故障,并提出解决方案,抑制谐波电流的放大,采用合理的补偿策略,较终达到滤除谐波污染的目的。得出结论:

        1.UPS的谐波主要是由相控整流功率器件引起的;

        2.12脉冲整流型UPS上下桥调相角或带载不对称时,输入端11次谐波滤波器会与UPS未抵消的5次、7次谐波电流产生谐振,放大5次、7次谐波电流;

        3.有源电力滤波器APF并不适用于谐波电压(背景谐波)引起的谐波电流滤波场合;

        4.电能质量优化工程项目中,了解现场负荷特性、分析故障根本原因,是解决工程项目谐波治理的必要条件。

    文章来源:《电气时代》2017年12期。

    参考文献:

        [1] 王兆安.谐波抑制和无功功率补偿[M]. 北京:机械工程出版社2005(10)

        [2] 能源部电力司.GB/T14549-93电能质量 公用电网谐波[S].北京:中国标准出版社,1994.

        [3] 程爱玲. 浅谈有源和无源产品在无功补偿与谐波治理中的应用[J]. 现代企业教育.2014

        [4] 商少锋. 电力有源滤波与电容器组无功补偿混合应用技术研究[J]. 浙江电力,2007(4)21-24

        [5] 张崇巍,张兴.PWM整流及其控制[M].北京:机械工业出版社,2003.

        [6] 王毅,张标标.智慧能源[M].北京:*大学出版社,2012.

        [7] 高凤友.无源逆变电源的原理与应用[M].北京:化学工业出版社,2011.

        [8] Zeliang Shu, Yuhua Guo, and Jisan Lian. Steady-state and dynamic study of active power filter with efficient  FPGA-based control algorithm [J]. IEEE Transactions on Industrial Electronics, 2008, 55(4):1527- 1536.

        [9] 曹武. 谐波独立补偿有源滤器关键技术研究[D]. 南京:东南大学硕士学位论文,2011.


    板载式ANAPF有源滤波器产品介绍  安科瑞鲍静君

    1 引言

        近年来,电力电子技术不断地创新、发展,电力电子技术已被广泛应用于人们的生活、学习、工作中,常用的充电装置、计算机、UPS等都是电力电子技术发展的产物。这些设备的发明和使用给社会带来较大的便利,但随着这些设备的大量应用,电能质量问题也十分**。谐波作为目前危害电能质量的首要因素,受到了供用电双方的高度重视。社会上已经有许多电能质量解决方案,并已经形成一个规模庞大的产业,安科瑞电气就是其中的良好者。

    2 谐波的产生和治理

        谐波是什么?谐波通俗的来说就是指电流中所含有的频率为基波整数倍的电量,我们常说的N次谐波,它们的频率就是基波的N倍;从广义上来说,任何与工频频率不同的成分都可以称之为谐波,这也就是为什么有时会有“间谐波”(非整数倍工频频率)的说法。

    2.1 谐波的产生

        在只含线性元件(电阻等)的线路中,流过的电流与施加的电压成正比,电流波形为正弦波。而谐波产生的根本原因就是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成正比关系造成的波形畸变。当电力系统向含有非线性元器件的设备供电时,这些设备不光变换、吸收系统的电能,还会把部分基波转换成谐波,倒送入系统,污染电网。生活中常有的照明灯光、电视画面明暗闪烁等情况,都和谐波有关。

    2.2 谐波的危害

        在输配电网络中,谐波会降低变压器容量、减小线缆载流能力,严重时会造成突然电力中断,造成重大社会经济损失;在生产企业中,谐波会干扰通讯信号,还会引起元器件误动作,降低设备稳定性导致残次品率增加,还会加速设备老化缩短使用寿命,严重时可能损坏设备甚至引起火灾。

    2.3 产生谐波的设备

    产生谐波的设备一般是非线性设备,主要分为以下几类:

        (1) 具有铁磁饱和特性的铁芯设备,如变压器、电抗器等;

        (2) 以具有强烈非线性特性的电弧为工作介质的设备,如气体放电灯、交流弧焊机、炼钢电弧炉等;

        (3) 以电力电子元件为基础的设备,如开关电源、变流装置、调压装置等。

    一些常见的产生谐波的负载及其谐波量可参见表1。

    表1常见谐波负载的谐波含量

    2.4 谐波治理方案

        目前谐波治理的措施主要有3种:受端治理,即从受到谐波影响的设备或系统出发,提高他们的抗谐波干扰能力;主动治理,即从谐波源本身出发,使谐波源不产生或减少谐波;被动治理,即外加滤波装置阻止谐波注入电网。被动治理是目前采用较广泛的谐波治理方案。

        外加的滤波装置有两种,分别是无源滤波装置和有源滤波装置,他们各有优缺点。无源滤波装置结构简单,安装方便,初期投入小,但是只能滤除固定次数的谐波且易与电网发生谐振;有源滤波装置结构复杂,造价较高,但是补偿效果好,后期维护方便,维护成本低。所以安装有源滤波装置是目前被广泛应用的谐波治理方式。 

    3 板载式有源滤波装置产品介绍

        ANAPF板载式有源滤波装置是我公司研发的电能补偿装置的一种,采用现代电力电子技术,基于高速全数字控制方式的数字信号处理技术制成的新型电力谐波治理**设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。与传统无源滤波器(相当于给谐波电流提供了接近于0的较低阻抗通道,以免谐波电流注入系统)相对比,有源滤波装置通过IGBT逆变模块实现了各次谐波的动态滤除。

    3.1 ANAPF板载式有源滤波装置工作原理

        ANAPF板载式有源滤波装置可以通过外部电流互感器,实时检测负载电流,并通过内部DSP计算,提取并计算出负载电流的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中抵消对应谐波电流,达到滤波目的。工作原理图及补偿示意如图1所示。 

     

    图1 ANAPF工作原理及对应波形示意

    3.2 ANAPF板载式有源滤波装置结构介绍及优势分析

        ANAPF板载式有源滤波装置相较于公司前期的立柜式产品来说,体积更小、重量更轻、方便安装、更美观,这对产品的结构安排和内部集成度有了更高的要求。我司生产的ANAPF有源滤波装置分为两种安装方式 ,其主要参数如下:

    壁挂式板载模块外观如图2所示:

    抽屉式板载模块外观如图3所示:

        其中壁挂式结构适用于负荷容量较小或场地紧凑的场合,一般推荐为单台独立运行时使用;抽屉式结构多采用多模块并联安装在抽屉柜体中的安装方式,可根据实际补偿容量需求增减柜体内模块数量,适用于大负荷容量的场合。目前我司常规产品较大为6个模块组合,并且正在向更多模块数,更大容量化方面研究与发展。其抽屉柜安装效果图如图4所示。

        该方式相对于传统整柜式有以下几项优点:

        (1)每个模块容量为50A(可在适当范围内浮动),相同的柜体格局下有更多容量选择,并可根据客户实际需求增加模块数量至6个以上(需加宽柜体尺寸,效果可参照图5);

        (2)可根据负载使用变化随时增、减APF设备的容量(加、减模块数量即可,并对人机界面作相应参数设置);

        (3)每个模块单独安装散热单元,并可在柜体上加装散热风扇,散热效果良好,故障率低;

        (4)多个模块之间虽有通讯连接,但各台的故障并不会相互影响其它模块继续工作(补偿容量会相应减小);

        (5)后期维护方便,可实现故障模块单独维修、更换;维护期间ANAPF有源滤波装置可持续工作。

        (6)结构精巧,设计灵活,可作为零部件(模块)单独购买,嵌入三方柜体;柜型外观、尺寸的改变基本不影响内部安装和整体使用效果。

        (7)生产*,即使是非常规要求产品亦能保证及时投入使用,确保客户经济利益。

     

    图4 模块化组合式安装示意图             图5 两列模块组装效果示意图       

    3.3 ANAPF板载式有源滤波装置的补偿效果

        下面是某负载的产品应用效果图,其谐波含量在26%左右,通过电能质量分析仪PW3198的分析可以帮助我们很直观的看到补偿效果。

     

    补偿前网侧谐波畸变率                 补偿前网侧谐波畸变率

        补偿后谐波电流含量仅为4%,低于国标对0.38KV电网的要求5%,以C相为例,对应的各次谐波含量清单如下:

      

    补偿前C相各次谐波含量                补偿后C相各次谐波含量

        从波形来看效果可以更直观的看到补偿效果:补偿前电流波形为M形,补偿后已变为正弦波,效果良好。  

    补偿前电压电流波形                  补偿前电压电流波形

    3.4 ANAPF板载式有源滤波装置的型号选择

        该产品为并联型有源电力滤波器,其命名方式为:

     

        其中谐波补偿电流的大小可安排售前工程师协助测量或根据变压器容量和行业类型自行估算后选择,计算方法见公式(1)。

    4 结束语

        ANAPF板载式有源滤波装置在原有立柜、抽屉、壁挂式产品基础上,进一步缩小了体积并减轻重量;由于其采用了高集成化模块设计,后期维护变得更加轻松、便利,而且治理效果也更显着。其不仅能治理谐波,也能补偿无功:有效地治理谐波,可改善电能质量使设备误动作率大大降低,从而提高电气设备利用率和产品合格率,既保证了电网安全运行,又能降低用户的电力损耗;而有效地补偿无功,使功率因数高达0.98以上,则避免了用户因功率因数不足而被罚款,也为用户带来了可观的经济收益。由此可见,选用ANAPF板载式产品,对电网设施和用户设备都有较大的益处,可以说是实现了供用电双方的共赢。

     

    【参考资料】

    安科瑞电能质量监测与治理选型手册。2015.08版

    安科瑞电气股份有限公司产品手册.2013.01.版





    有源和无源滤波器-有滤波器厂商-有源滤波器厂家排名-三端滤波器

    你可能感兴趣的产品